The evolution of pCO2, ice volume and climate during the middle Miocene
نویسندگان
چکیده
The middle Miocene Climatic Optimum (17–15 Ma; MCO) is a period of global warmth and relatively high CO2 and is thought to be associated with a significant retreat of the Antarctic Ice Sheet (AIS). We present here a new planktic foraminiferal dB record from 16.6 to 11.8 Ma from two deep ocean sites currently in equilibrium with the atmosphere with respect to CO2. These new data demonstrate that was well correlated to variations in the concentration of atmospheric CO2. What is more, within our sampling resolution ( 1 sample per 300 kyr) there is no evidence of hysteresis in the response of ice volume to CO2 forcing during the middle Miocene, contrary to what is understood about the Antarctic Ice Sheet from ice sheet modelling studies. In agreement with previous data, we show that absolute levels of CO2 during the MCO were relatively modest (350–400 ppm) and levels either side of the MCO are similar or lower than the pre-industrial (200–260 ppm). These new data imply the presence of either a very dynamic AIS at relatively low CO2 during the middle Miocene or the advance and retreat of significant northern hemisphere ice. Recent drilling on the Antarctic margin and shore based studies indicate significant retreat and advance beyond the modern limits of the AIS did occur during the middle Miocene, but the complete loss of the AIS was unlikely. Consequently, it seems that ice volume and climate variations during the middle Miocene probably involved a more dynamic AIS than the modern but also some component of land-based ice in the northern hemisphere. & 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Antarctic ice-sheet response to atmospheric CO2 and insolation in the Middle Miocene
Foraminiferal oxygen isotopes from deep-sea sediment cores suggest that a rapid expansion of the Antarctic ice sheet took place in the Middle Miocene around 13.9 million years ago. The origin for this transition is still not understood satisfactorily. One possible cause is a drop in the partial pressure of atmospheric carbon dioxide (pCO2) in combination with orbital forcing. A complication is ...
متن کاملMiddle Miocene Southern Ocean cooling and Antarctic cryosphere expansion.
Magnesium/calcium data from Southern Ocean planktonic foraminifera demonstrate that high-latitude (approximately 55 degrees S) southwest Pacific sea surface temperatures (SSTs) cooled 6 degrees to 7 degrees C during the middle Miocene climate transition (14.2 to 13.8 million years ago). Stepwise surface cooling is paced by eccentricity forcing and precedes Antarctic cryosphere expansion by appr...
متن کاملResolving apparent conflicts between oceanographic and Antarctic climate records and evidence for a decrease in pCO2 during the Oligocene through early Miocene (34–16 Ma)
An apparent mismatch between published oxygen isotopic data and other paleoclimate proxies for the span from 26–16 Ma is resolved by calibration against global sea-level estimates obtained from backstripping continental margin stratigraphy. Ice-volume estimates from calibrated oxygen isotope data compare favorably with stratigraphic and palynological data from Antarctica, and with estimates of ...
متن کاملCoupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years.
The carbon dioxide (CO2) content of the atmosphere has varied cyclically between approximately 180 and approximately 280 parts per million by volume over the past 800,000 years, closely coupled with temperature and sea level. For earlier periods in Earth's history, the partial pressure of CO2 (pCO2) is much less certain, and the relation between pCO2 and climate remains poorly constrained. We u...
متن کاملA 40-million-year history of atmospheric CO(2).
The alkenone-pCO2 methodology has been used to reconstruct the partial pressure of ancient atmospheric carbon dioxide (pCO2) for the past 45 million years of Earth's history (Middle Eocene to Pleistocene epochs). The present long-term CO2 record is a composite of data from multiple ocean localities that express a wide range of oceanographic and algal growth conditions that potentially bias CO2 ...
متن کامل